24. 牛吃草问题
【题型特征】
2006年后的公务员考试中出现了一些较难的“牛吃草”问题,这类题在理解上有一定的难度,但如果掌握了关键点,便较容易解答。
关键知识点:1、草场原有的草量。2、草场每天生长的草量;3、牛每天吃的草量。
核心关系式:
牛吃草总量(牛头数×时间)=原有草量+新长出草量(每天长草量×时间)
总量的差/时间差=每天长草量=安排去吃新草的牛的数量
原有草量/安排吃原有草的牛的数量=能吃多少天。
单位:1头牛1天吃草的量
【经典例题】
1、一片牧草,可供16头牛吃20天,也可以供20头牛吃12天,那么25头牛几天可以吃完?
解析:法1(方程法),等量关系:原有草量相等。
设每头每天吃草量为“1”, 天吃完,每天长草量
16×20-20 =20×12-12 =25 - , =8, =10.
法2,速度差(追及问题),吃完草可以看着是牛追上草。
(牛吃草速度-草生长速度)×时间(天数)=原有草量
20(16- )=12(20- )= (25- ), =8, =10.
法3(利用基本关系式)
总量的差/时间差=每天长草量,(16×20-20×12)/(20-12)=10;
原有草量=牛吃草总量-新长出草量,16×20-20×10=120;
25头牛分10头吃每天长出的草,还剩15头吃原有的草,120/15=8天。
2、有一个水池,池底有泉水不断涌出。用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完。如果14台抽水机需多少小时可以抽完?( )
A.25 B.30 C.40 D.45
解析:泉水每小时涌出量为:(8×15-5×20)÷(20-15)=4份水;
原来有水量:8×15-4×15=60份;
用4台抽涌出的水量,10台抽原有的水,需60/10=6小时。
25. 容斥问题
【题型特征】
容斥原理的集合描述:
1.
2.
【经典例题】
1.对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:
A.22人 B.28人 C.30人 D.36人 (2005年国家A类行测真题)
正确答案【A】
解法1:设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52),则有:
A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)
B∩C=既喜欢看电影又喜欢看戏剧的人(16)
A∩B∩C=三种都喜欢看娜耍?2)
A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)
根据公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
C∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)
=148-(100+18+16-12)=26
所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C
=52-16-26+12=22
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] 下一页